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Recently there has been a renewed interest in the calculation of exact-exchange and random-phase approxi-
mation �RPA� correlation energies for realistic systems. These quantities are main ingredients of the so-called
EXX /RPA+ scheme which has been shown to be a promising alternative approach to the standard local-
density-approximation/generalized-gradient-approximation density-functional theory �LDA/GGA DFT� for
weakly bound systems where LDA and GGA perform poorly. In this paper, we present an efficient approach to
compute the RPA correlation energy in the framework of the adiabatic-connection fluctuation-dissipation
formalism. The method is based on the calculation of a relatively small number of eigenmodes of RPA
dielectric matrix, efficiently computed by iterative density response calculations in the framework of density
functional perturbation theory. We will also discuss a careful treatment of the integrable divergence in the
exact-exchange energy calculation which alleviates the problem of its slow convergence with respect to
Brillouin-zone sampling. As an illustration of the method, we show the results of applications to bulk Si, Be
dimer, and atomic systems.
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I. INTRODUCTION

Developments during the last several decades have
brought density-functional theory �DFT� to be the method of
choice in many calculations of physical and chemical prop-
erties from first principles. Despite its many spectacular suc-
cesses, Kohn-Sham �KS� density-functional theory within
the local-density approximation �LDA� and generalized gra-
dient approximations �GGAs� for the exchange-correlation
�xc� functional still has some well-known drawbacks. This
includes the failure of standard DFT functionals in the de-
scription of van der Waals systems where long-range corre-
lation effects are predominant. This failure manifests clearly
in erratic or completely failed results when LDA/GGA DFT
is applied to sparse matter, including layered structures,
polymer and molecular crystals, or weakly bound chemical
systems.

Of all the attempts to overcome these drawbacks, the ap-
proach based on the formally exact expression of xc energy
in term of linear-response functions derived from the adia-
batic connection fluctuation-dissipation �ACFD� theorem1

provides a promising way to develop a systematic improve-
ment.

The method is in principle entirely parameter free—
although an appropriate definition of the xc kernel is still
needed—and a few difficult cases where standard DFT fails
qualitatively have been described with satisfactory results.2–4

Practical applications in a few case studies have shown that
not only the description of van der Waals systems is im-
proved but that the already satisfactory description of many
molecules and solids are also not compromised.3,5 The
method is very computationally demanding and this has pre-
vented its direct application to complex systems. Most often
it is limited to a post-self-consistent correction where the
accurate exchange-correlation energy is computed from the

charge density obtained from a self-consistent calculation
performed with a more traditional xc functional. The ACFD
formalism also serves as the starting point for further simpli-
fications that have led to the development of an approximate
vdW-DF functional by Langreth et al.,6 which allows for the
treatment of large systems and has recently been made fully
self-consistent.7

We will address here the computational difficulties in-
volved in the full evaluation of ACFD exchange-correlation
energies of realistic systems, presenting an efficient general
formulation of the problem and its practical implementation
in the plane-wave pseudopotential �PW PP� formalism.

Previous implementations of ACFD formulas rely on the
construction of the full Kohn-Sham response function from
the spectrum of the KS Hamiltonian. Basic definitions and
some details are given in Sec. II. A more efficient scheme is
then presented in Sec. III that avoids the full diagonalization
of the KS Hamiltonian and the cumbersome summation over
occupied and unoccupied states needed in the traditional cal-
culation of the response functions, as well as the computa-
tionally demanding operations involved in the solution of the
Dyson equation via exact algebra. These steps are replaced
by the iterative calculation of a relatively small number of
eigenmodes of the RPA dielectric matrix as explained in its
general formulation in the first part of this section. Some
technical details of the implementation in the PW PP formal-
ism and a careful treatment of the integrable divergence
which alleviates the problem of slow convergence with re-
spect to Brillouin-zone �BZ� sampling in the calculation of
the exact-exchange energy are also discussed here. To dem-
onstrate the efficiency of the implementation, we will present
in Sec. IV results of applications to selected paradigmatic
systems, namely, bulk Si, weakly bound Be dimer, and a
number of spherical atomic systems.
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II. THEORY

We recall here some basic definitions in ACFD theory as
well as some computational details of currently available PW
PP implementations.

A. Exchange and correlation energy in ACFD theory

In the ACFD formalism, exchange-correlation energy, Exc,
of an electronic system with density n�r� can be written in
the formally exact form

Exc = −
�

2�
�

0

1

d�� drdr�
e2

�r − r��

� ��
0

�

du���r,r�;iu� + ��r − r��n�r�� , �1�

where ���r ,r� ; iu� is the density response function at imagi-
nary frequency, iu, of the system where Coulomb interaction
between electrons is scaled by �, i.e., �e2 / �r−r��, and the
external potential is modified so that the electronic density is
the same as in the ground state of the physical system ��
=1�. The exchange-correlation energy can be furthermore
separated into the KS exchange energy, Ex, and the correla-
tion energy, Ec. The former is the counterpart of Hartree-
Fock exchange energy in the context of density-functional
theory. It is given by the well-known expression in term of
occupied KS orbitals �a nonmagnetic system is considered
for simplicity and a factor of 2 accounts for spin degen-
eracy�,

Ex = − 2
e2

2
� drdr�

��i

occ
	i

��r�	i�r���2
�r − r��

. �2�

The latter can be expressed in a compact form in terms of
linear density responses, in matrix notation, as

Ec = −
�

2�
�

0

1

d��
0

�

duTr�vc	���iu� − �0�iu�
� . �3�

In Eq. �3�, vc is the electron-electron interaction kernel,
e2 / �r−r��, and �0�iu� is the density response function of the
noninteracting electron system and can be explicitly ex-
pressed in term of, occupied and empty, KS orbitals, 	i�r�,
KS eigenvalues, 
i, and occupation numbers, f i,

�0�r,r�;iu� = 2�
i,j

�f i − f j�
	i

��r�	 j�r�	 j
��r��	i�r��


i − 
 j + i�u
, �4�

where again a factor of 2 is present accounting for spin de-
generacy. For ��0, the interacting response function, ��, is
related to �0 by a Dyson-like equation with an exchange-
correlation kernel, f�

xc�iu�, which is still unknown,

�� = �0 + �0	�vc + f�
xc
��. �5�

In the above formula, frequency dependence is implied in
each term �with the exception of the Coulomb kernel, vc� and
spatial coordinate dependence is implicit in the matrix nota-
tion. Despite the exactness of the expressions presented

above, one needs to use an approximation for the xc kernel
in practical applications. When the xc kernel is specified, the
system of Eqs. �3�–�5� is closed and allows one to evaluate
the correlation energy.

B. Total energy in EXX ÕRPA+ scheme

Experience has shown that none of the available approxi-
mate xc kernels gives a systematic improvement; different
kernels perform better for different systems. Although the
RPA kernel, i.e., simply setting f�

xc in Eq. �5� to zero, is exact
for long-range correlation, it is a poor approximation for
short-range correlation. When applied to atomic or molecular
systems, RPA correlation energy alone is very inaccurate. In
fact, it was abandoned decades ago as a DFT approximate xc
functional until a quite recent work by Kurth and Perdew8

showed that it is possible to correct the deficiency of RPA in
a simple way by combining the full RPA with a local- or
semilocal-density correction for short-range correlation. This
leads to the so-called RPA+ correlation energy in which the
local-density correction for the short-range correlation is
chosen in such a way that Ec

RPA+ becomes exact in the limit
of homogeneous electron gas �HEG�,

Ec
RPA+ = Ec

RPA − �Ec
LDA−RPA − Ec

LDA� . �6�

In the above definition, Ec
LDA−RPA is the local-density ap-

proximation of RPA correlation energy which is exactly can-
celed out by Ec

RPA in the limit of an HEG.
In order to have exchange and correlation energies treated

on the same footing, exchange energy must also be computed
in the same formalism, i.e., from Eq. �2�.

In practice this EXX /RPA+ scheme is applied as a post-
scf correction and the energy is calculated by first perform-
ing a standard LDA/GGA DFT calculation and then replac-
ing the xc energy at LDA level by exact-exchange and RPA+
correlation energies calculated from the LDA/GGA charge
density. In spite of this, the EXX /RPA+ scheme has been
shown to be a promising approach for the description of
weakly bound systems where standard LDA/GGA performs
poorly.2–4

C. Existing implementations in PW PP method

Existing implementations9 of the ACFD formulas in
plane-wave pseudopotential computer codes start by first di-
agonalizing the KS Hamiltonian for all the occupied and
unoccupied KS orbitals,4 or at least a good part of the unoc-
cupied states,2,3 so that the KS response function �0�iu� can
be calculated explicitly according to its definition in Eq. �4�.
The calculation then proceeds by solving the Dyson-like
equation for ���iu� for a number of values of the coupling
constant, �, and of the imaginary frequency, iu, and then by
integrating over these variables to ultimately obtain the cor-
relation energy. An obvious disadvantage of these implemen-
tations is that many unoccupied states need to be considered
in order to get well-converged results. This forces one to
solve the KS problem using full matrix diagonalization algo-
rithms with unfavorable scaling instead of very efficient
iterative-diagonalization techniques, commonly used to cal-
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culate the occupied KS orbitals in typical self-consistent cal-
culations. Moreover the summation over valence and con-
duction bands and over all the k points in the Brillouin zone
for setting up the response function 	Eq. �4�
 has been shown
to be a very cumbersome operation which prevents the ap-
plication of the method to large systems.

III. EFFICIENT CALCULATION OF ACFD FORMULAS

We describe now our method, first focusing on its general
aspects, valid for any symmetry and basis set, and then spe-
cializing the discussion to a PW PP approach.

A. General aspects and PW PP implementation

Let us starts by defining the following generalized eigen-
value problems:

�0�wi� = aivc
−1�wi� , �7�

���zi
�� = bi

�vc
−1�zi

�� , �8�

where �0, �� and vc are linear response and Coulomb opera-
tors in matrix notation, ��wi� ,ai� and ��zi

�� ,bi
�� are eigenpairs

�all these quantities depend implicitly on the imaginary fre-
quency iu�. These eigenvalues problems are well defined
since all the operators are symmetric and positive �vc� or
negative ��0 ,��� definite. Once solutions of the generalized
eigenvalue problems are available, the traces of vc�� and
vc�0 in Eq. �3� are simply evaluated by summing up all their
�relevant� eigenvalues. Working with these generalized ei-
genvalue problems has several advantages when RPA ap-
proximation is considered: �i� the set of formally
�-dependent eigenpotentials, ��zi

���, is actually � independent
and coincides with its noninteracting counterpart, ��wi��, �ii�
the corresponding eigenvalues are trivially related as

bi
� =

ai

1 − �ai
, �9�

which �iii� allows one to perform the � coupling-constant
integration in Eq. �3� analytically leading to the final expres-
sion,

Ec =
�

2�
�

0

�

du�
i

�ai�iu� + ln	1 − ai�iu�
� . �10�

The spectrum of the eigenvalue problem in Eq. �7� is
bounded from above by zero, which is also an eigenvalue,
corresponding to a constant eigenpotential. Note that the ei-
genvalues �ai� are closely related to those of the RPA dielec-
tric matrix since 
RPA=1−vc�0, and the calculation of �ai� is
very similar to the calculation of dielectric band structures
introduced a few decades ago.10,11 In principle, the full spec-
tra must be known in order to calculate the correlation en-
ergy from Eq. �10� above. In practice, however, previous
calculations10–12 have shown that only a small number of
eigenvalues of the RPA dielectric matrix significantly differs
from unit. This translates in the fact that only a small fraction
of the eigenvalues �ai� will be significantly different from
zero and needs to be explicitly included in the correlation

energy sum; all the rest being so close to zero that their
contributions to Ec can be treated in a suitable approximation
or even simply neglected.

Evaluation of low-lying eigenvalues of the noninteracting
problem in Eq. �7� is done efficiently by iterative-
diagonalization procedure starting from a set of trial eigen-
potentials. The basic operation involved in the iterative di-
agonalization is the calculation of the noninteracting
response to a trial potential, �n=�0�v. This is done resort-
ing to the linear-response techniques of density functional
perturbation theory,13 simply generalized to imaginary fre-
quency.

Technically, for any given noninteracting perturbing po-
tential, �v, the induced charge-density variation is

�n�r� = 2 Re �
i

occ

	i
��r��	i�r� , �11�

where the sum runs over the occupied �valence� states and
�	i�r� is the �conduction-band projected� variation of the
single-particle state, 	i�r�, that can be obtained as the solu-
tion of the linear system,

	HKS + 
Pv − �
i + iu�
��	i� = − �1 − Pv��v�	i� , �12�

where Pv=�i
occ�	i�
	i� is the projector on the occupied mani-

fold and 
 is a positive constant, larger than the valence
bandwidth, ensuring that the linear system is not singular
even in the limit for iu→0. The non-Hermitian linear sys-
tems are solved by employing a fast and smoothly converg-
ing variant of the biconjugate gradient algorithm.14

Overall the procedure amounts to solving the usual DFPT
linear systems13 in which the ground-state valence eigenval-
ues are shifted by the complex constant iu, as already ex-
plained by Mahan15 long time ago for the case of atomic
polarizabilities. Note however that, at variance with standard
DFPT, no self-consistent cycle is needed to obtain �n as the
response of the noninteracting system is being considered
here.

As in static DFPT calculations, only occupied Kohn-
Sham orbitals and their linear response need to be calculated,
instead of the full KS spectrum needed in other
implementation.2–4

The scheme describe above have been implemented in the
Quantum ESPRESSO distribution.16 Very similar ideas have
also been recently reported by Wilson et al.17 for the calcu-
lation of dominant eigenpotentials of static dielectric matri-
ces.

The description presented so far is to a large extent basis-
set independent. For periodic systems, matrix representations
of the Kohn-Sham linear-response functions satisfy the
Bloch theorem and can be classified by a vector q in the
Brillouin zone. The generalized eigenvalue problem in Eq.
�7� can therefore be solved separately for each q vector. As a
consequence, the expression for the correlation energy per
unit cell becomes
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Ec =
�

2�
�

0

�

du
1

Nq
�
q=1

Nq

�
i

Neig

�ai�q,iu� + ln�1 − ai�q,iu��� ,

�13�

where the notation 1
Nq

�q=1
Nq indicates the average over the

Brillouin zone and can be performed using the special-point
technique that takes advantage of the point-group symmetry
of the system.

Special care is required in the limit of q→0 since the
leading matrix elements �0

00�q→0� and vc
−1 both go to zero

as �q�2 making the eigenvalue problem 	Eq. �7�
 ill defined. A
simple solution to the problem is to use shifted grids of q
vectors in the special-point summation.

B. Exchange energy

Although the main focus of this work is the calculation of
correlation energy it is clear that an accurate evaluation of
the exchange term is also necessary. A subtle problem, not
widely recognized in the literature, related to the q→0 di-
vergence of the Coulomb interaction is present in the calcu-
lation of exact-exchange energy in a plane-wave approach
and special care must be paid to it.

The exchange energy per unit cell for a periodic system is
defined as

Ex = −
e2

N
�

kv

k�v�

� 	kv
� �r�	k�v��r�	k�v�

� �r��	kv�r��

�r − r��
drdr�,

�14�

where an insulating and nonmagnetic system is assumed for
simplicity. Integrals and wave-function normalizations are
defined over the whole crystal volume, V=N� �� being the
unit-cell volume�, and the summations run over all occupied
bands and all N k points defined in the BZ by Born–von
Karman boundary conditions.

Introducing codensities, �
k,v
k�,v��r�=	k�,v�

� �r�	k,v�r�, with
Fourier transform, �

k,v
k�,v��k−k�+G�, the above expression

can be recast in reciprocal space as

Ex = −
4�e2

�
�

�

�2��3� dq�
G

A�q + G�
�q + G�2

, �15�

where an auxiliary regular function A�q+G�
= 1

N�k�v,v���k,v
k−q,v��q+G��2 has been introduced.

A direct integration of Eq. �15� on the regular q-point
grid, defined by the k−k� differences of the points used for
the wave-function BZ sampling, is problematic due to inte-
grable divergence that appears in the q+G→0 limit. The
problem has been addressed several times in the literature
and many related schemes have been proposed to treat it.
Most eventually resort to a procedure, first proposed by Gygi
and Baldereschi,18 where an easily integrable term, that dis-
plays the same divergence, is subtracted from and separately
added back to Eq. �15�. Of the many proposed forms18–20 we
adopt here one of the simplest that can be straightforwardly
applied to any crystal structure: we simply subtract and add a

term A�0�e−
�q + G�2 / �q+G�2 from the integrand. The integra-
tion of the resulting nondivergent term can then be per-
formed by a summation over a regular grid of points �either
the full q-point grid defined from the k-point differences or,
in order to reduce computational cost, on a subgrid of it�,
while the divergent integration can be performed explicitly.

The final results is

Ex = − �4�e2

Nq� ��
q,G

�
A�q + G�
�q + G�2

+ �� lim
q→0

A�q� − A�0�
q2 ���

+ DA�0�� �16�

with

D =
4�e2

Nq�
�− �

q,G
�
e−
�q + G�2

�q + G�2
+ 
� +

4�e2

�2��3��



. �17�

The symbol �� in the preceding formulas implies that the
term q+G=0 is excluded. Notice that with our simple choice
the expression for the divergence correction, D, is just �the
reciprocal-space part of� the Ewald sum for a single point
charge, periodically repeated according to the superperiodic-
ity defined by the q-point grid used. As long as the parameter

 is chosen so that the reciprocal-space sum is converged the
result is independent of 
 and gives a correction that decay
very slowly with the inverse of the cell linear dimension, L.
This 1 /L dependence of the singularity correction is for in-
stance evident in Fig. 2 of Ref. 20, although the scaling law
of the correction was not explicitly pointed out there. In gen-
eral, the error incurred on by neglecting this correction
would be so large that it is almost invariably included in the
calculation.21

From a closer analysis of Eq. �16�, however, it is also
clear that, even when the main effect of the divergence has
been taken into account by the Gygi-Baldereschi procedure,
another correction needs to be included to properly describe
the spherically averaged limit, 

limq→0

A�q�−A�0�
q2 ��, that can-

not be calculated directly for q=0.
It can be shown 	see the Appendix
 that this term is sim-

ply related to the gauge invariant spread of the occupied
manifold, as can be defined in the theory of maximally lo-
calized Wannier functions.22 If this term is neglected �as to
the best of our understanding it has always been neglected so
far in the literature� an error proportional to this spread and
inversely proportional to the cell volume and the number of
q points included in the BZ summation is made. This might
be the reason for the reported slow convergence of the ex-
change energy with respect to BZ integration, even for
simple systems such as bulk silicon5 or argon.4

We have therefore included in the calculation of the ex-
change energy an estimate of the limiting term, based on the
assumption that the grid of q points used for BZ integration
is dense enough that a coarser grid, including only every
second point in each direction would also be equally accu-
rate. Since the limiting term contribute to the integral with
different weight in the two grids one can estimate its value as
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�� lim
q→0

A�q� − A�0�
q2 �� =

1

7 �
dense

�
A�q + G�
�q + G�2

−
8

7 �
coarse

�
A�q + G�
�q + G�2

. �18�

We have verified that the convergence with respect to BZ
integration is generally improved. For instance for the ex-
change energy of solid argon, calculated from LDA wave
functions, a regular grid of 6�6�6 points was sufficient for
a convergence of the order of 0.1 mRy, while a much denser
12�12�12 grid was needed in Ref. 4.

C. Computational cost

To discuss the computational cost of our implementation,
let us denote by Nv and Nc the number of valence and con-
duction bands, and by Npw� and Npw�0

the number of plane
waves used to represent wave functions and Kohn-Sham re-
sponse functions, respectively. The basic operations in our
implementation is the calculation of the linear density re-
sponse via DFPT technique. For a norm-conserving pseudo-
potential, the computational cost of a linear-response calcu-
lation is essentially Nv� �Nv�Npw�+Npw�0

�. Since this
calculation is done repeatedly in the iterative-diagonalization
procedure, the total computational cost must be multiplied by
the number of eigenvalues �Neig� that we want to calculate
and the number of iterations Niter in the iterative diagonal-
ization. While the latter is likely independent of the system
size, it is expected and in fact there is evidence17 that the
former is proportional to it. Therefore the total scaling of our
approach is proportional to Npw�Nv

2Neig which grows as the
fourth power of the system size. In other implementations of
ACFD formulas which are based on the evaluation of the full
response matrix, the most time-consuming operation is the
construction of the noninteracting Kohn-Sham response
function whose computational cost is proportional to
Npw�0

2 NvNc. This means that the computational cost of these
approaches also scales with the fourth power of the system
size.

Note however that Npw� is typically smaller than Npw�0
by

an order of magnitude since �0 relates to density responses
and perturbing potentials whose kinetic-energy cutoff is four
times larger than the one needed for wavefunctions in the
case of norm conserving pseudopotentials and even more
than that in the case of ultrasoft pseudopotentials. Also the
number of eigenpotentials that needs to be computed is ex-
pected to be at least an order of magnitude smaller than the
size of the response function �Npw�0

� and the number of it-
eration Niter is unlikely to exceed 10, especially if in the
imaginary frequency scan good starting trial eigenpotentials
are taken from the previous frequency in the list. Our rough
estimate shows therefore that the number of operations in-
volved in our method is from 100 to 1000 smaller than the
one needed for other implementations. Although real CPU-
time obviously depends on many details in the realization of
each approach, we are confident that our approach allows us
to implement ACFD formulas in a very efficient way.

Moreover, our approach also has significant advantages
due to its iterative nature. Iterative solution of the general-
ized eigenvalue problem 	Eq. �8�
 will converge very rapidly
if the initial guess of the eigenpotentials are already close to
the sought solutions. As mentioned earlier calculated solu-
tions for a given imaginary frequency can serve as starting
points for nearby frequencies. A similar behavior can be ex-
pected also for calculation of response functions in nearby q
vectors although it may be more convenient in this case to
exploit the very easy parallelization of the q-vector summa-
tion involved in the correlation energy formula, Eq. �13�.
Finally, as already mentioned in the general formulation, the
analysis of the response function in terms of eigenmodes
allows us to analytically perform the coupling-constant inte-
gration with a significant computational saving.

IV. APPLICATION TO SELECTED SYSTEMS

A. Bulk Si

We have chosen bulk Si system as a testing ground for our
implementation of ACFD theory since the computational
cost for the case of bulk Si is rather moderate, which is
convenient for convergence checks, and there exist several
published data that we can compare with. As a first check,
we have calculated the 20 topmost eigenvalues of the dielec-
tric matrix at q= �0,0 ,0.01� 2�

a and compared our results with
those reported in Ref. 17 where the same quantities were
calculated by the explicit diagonalization of the RPA dielec-
tric matrix and by an iterative-diagonalization procedure,
named projective dielectric eigenpotential method �PDEP�,
similar to ours.23 The results reported in Table I show perfect
agreement of the two methods among each other and with
the explicit calculation.

Let us now investigate the convergence of RPA correla-
tion energy with respect to the number of eigenmodes in-
cluded in the summation of Eq. �13�. To this purpose, we
have used well-converged parameters for standard LDA cal-
culation of silicon ground-state charge density to evaluate the
exact-exchange and RPA correlation energies. The calcula-
tion was performed for the diamond structure in the funda-
mental face-centered cubic cell with lattice constant of 10.20
bohr �corresponding to the theoretical equilibrium geometry
at LDA level� using a regular grid of 64 k point and a kinetic-
energy cutoff of 20 Ry.

We show in Fig. 1 the dependence of RPA correlation
energy, Ec

RPA, on the number of eigenvalues, Neig, included in
the summation. Ec

RPA is indeed a rapidly converging function
of Neig; truncating the sum after inclusion of 80 or 100 ei-
genvalues already ensures a convergence within a few tens
of mRy. Also the summation over special q points represent-
ing the integration in the first Brillouin zone converges very
rapidly; the correlation energy changes only by a few mRy
when the number of special points increases from 2 to 6.

Next we compare our accurately calculated exchange and
RPA�+� correlation energies with the energies calculated
within the pseudopotential approximation but using quantum
Monte Carlo �QMC� techniques as reported by Hood and
co-workers in Ref. 24. Table II shows clearly that RPA alone
gives indeed too negative values for the correlation energy.
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When a simple local-density correction is added �RPA+�, the
presently calculated correlation energy becomes much closer
to the Monte Carlo values. Obviously, the comparison would
be more convincing had we used the same pseudopotential
used by Hood and co-workers. Nonetheless, we believe that
the good agreement between our calculations and the results
obtained by a very different method shows that our results
are at least in the right regime.

We have also calculated the total energy of bulk silicon as
a function of its lattice constant in EXX /RPA+ scheme in
order to determine the corresponding equilibrium properties.

Figure 2 shows the total energy per unit cell for bulk silicon
as a function of lattice constant calculated including different
numbers Neig �Neig=50, 100, 150, and 200� of response func-
tion eigenvalues in the summation in Eq. �10�. For each
curve the value calculated at the experimental lattice con-
stant is subtracted. The resulting �nearly� coincidence of the
different curves confirms the expectation that energy differ-
ences are rather insensitive to the number of eigenvalues
included in the RPA sum. This can also be appreciated in the
inset, where the unshifted EXX /RPA+ total energies are
shown: as more eigenvalues are included in the sum energy
vs volume curves rigidly shift down and although complete
convergence is reached only when including about 200 ei-
genvalues already 100 or even 50 eigenvalues basically re-
turn the same structural properties.

Table III collect the predicted equilibrium lattice param-
eter a0, bulk modulus B and pressure derivative of the bulk
modulus B� as a function of the number of eigenvalues Neig
used to evaluate RPA correlation energies. The changes in
these quantities when increasing Neig from 50 to 200 is very
small, of the order of 0.1% for a0 and B and 1% for B�. We
can therefore conclude that only a relatively small number of
eigenvalues are needed in the evaluation of ACFD RPA cor-
relation energy to get a good description of many equilib-
rium properties of the system.

Examining the predicted equilibrium lattice constants in
Table III, it seems that a more accurate �and sophisticated�

TABLE I. Top 20 eigenvalues of the dielectric matrix for an
eight-atom silicon cubic cell calculated via the present iterative
method and compared with he results reported in Ref. 17 for RPA
and for projective dielectric eigenpotential method

Index RPA17 PDEP17 Present work

1 14.7432 14.7538 14.7611

2 3.4231 3.4237 3.4238

3 3.3908 3.3914 3.3915

4 3.3908 3.3914 3.3915

5 3.3908 3.3914 3.3915

6 3.3908 3.3914 3.3915

7 3.3589 3.3596 3.3596

8 2.4910 2.4925 2.4925

9 2.4910 2.4925 2.4925

10 2.4910 2.4925 2.4925

11 2.4910 2.4925 2.4925

12 2.4905 2.4920 2.4920

13 2.4905 2.4920 2.4920

14 2.4716 2.4721 2.4721

15 2.1964 2.1972 2.1972

16 2.1960 2.1968 2.1968

17 2.1959 2.1966 2.1967

18 2.1959 2.1966 2.1967

19 2.1958 2.1966 2.1967

20 2.1958 2.1966 2.1967

20 40 60 80 100 120 140 160 180 200

Number of eigenvalues Neig

-0.90

-0.85

-0.80
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-0.70
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FIG. 1. �Color online� RPA correlation energy
as function of the number of eigenvalues in-
cluded in the summation in Eq. �13� for fcc bulk
silicon. The two curves are for different number
of special q points in the Brillouin-zone integra-
tion of the same equation.

TABLE II. Exchange and correlation energies for bulk Si calcu-
lated by our method compared to the values calculated using QMC
techniques by Hood and co-workers reported in Ref. 24

a0

�bohr�
Ex

�eV�
Ec

�eV�

VMC −29.15 −3.58�0.01

DMC −29.15 −4.08�0.08

EXX/RPA

10.20 −29.11 −6.12

10.26 −28.98 −6.11

EXX /RPA+

10.20 −29.11 −4.24

10.26 −28.98 −4.23
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treatment of xc energy in EXX /RPA+ scheme slightly wors-
ens the agreement with experimental data as compared with
the LDA results. Nevertheless, as already pointed out in Ref.
5, there are several points that can affect the final results: �i�
EXX /RPA+ scheme is applied in a non-self-consistent way
using LDA Kohn-Sham orbitals, �ii� the pseudopotential it-
self has been generated within LDA, and �iii� RPA+ is
among the simplest possible approximations to the xc kernel
within ACFD formalism. In view of these shortcoming we
believe that the present results for silicon can be considered
satisfactory.

In spite of the improvement of numerical efficiency in our
implementation, we also observed a slow convergence of
RPA correlation energy with respect to the kinetic-energy
cutoff as reported in other implementations.3,4 Efficient ex-

trapolation schemes that allow for the evaluation of correla-
tion energies in the limit of infinite energy cutoff, already
proposed for those implementations, can be easily adapted to
ours. As for the convergence with respect to BZ sampling,
we notice, as explicitly shown in Ref. 26 for the case of bulk
Si, that the difference between RPA correlation energies cal-
culated using different number of k points �for charge den-
sity� and q points �for Ec� is a well-behaved function of the
kinetic-energy cutoff, beyond a certain �not very large�
value. This suggests an extrapolation scheme, similar to the
one proposed in Ref. 3, that might become useful for the
calculation of more complex systems for which even the
present very efficient implementation would be too demand-
ing to reach complete convergence directly. The extrapola-
tion procedure would be as follows: First a coarse grid of k
and q point could be used for the calculation of RPA corre-
lation energies at different kinetic-energy cutoffs. Second,
the corresponding correlation energy in the infinite cutoff
limit could be obtained by extrapolating the results obtained
at finite cutoffs. Finally, the errors due to coarse k- and
q-point sampling of the BZ could be corrected by using finer
grids evaluated at small kinetic-energy cutoff �whose safe
value could be estimated from the convergence behavior of
the correlation energy computed with the coarser grids�.

B. Be2 dimer

Beryllium dimer is a paradigmatic example of the failure
of LDA/GGA DFT in the description of weakly bound sys-
tems. Previous studies2,27 have shown considerable discrep-
ancies between LDA/GGA and experimental results for bind-
ing energy, bond length and vibrational frequencies. While
the errors of LDA/GGA bond lengths are in fact quite small
�less than 2%�, the vibrational frequency is largely overesti-
mated. The most severe discrepancy refers to the binding
energy: both LDA and GGA approximations overestimate
the experimental value by at least a factor of 4. Fuchs and
Gonze2 have recently shown that EXX /RPA+ improves sig-
nificantly the description of Be2 dimer over standard DFT.
However, the error bar of the RPA correlation energy re-
ported in that study is still as large as 30 meV which is of the
same order of the experimental binding energy and the re-
ported theoretical value. Our efficient implementation of
ACFD formulas allows us to reach a better convergence, and
thus to provide a better assessment of the performance of
EXX /RPA+ formalism for this system. To this end, we have
carefully checked the convergence with respect to all param-
eters involved in our calculations, namely, the kinetic-energy
cutoff, the size of the supercell used to simulate an isolated
system using a periodic plane-wave approach, and the num-
ber of eigenvalues included in the evaluation of RPA corre-
lation energy.

The same norm-conserving pseudopotential used in Ref.
2, generated within exact-exchange Kohn-Sham formalism,
has been used here. It is a rather soft pseudopotential and
increasing the plane-wave kinetic-energy cutoff from 20 to
30 Ry makes the LDA total energy, the exact-exchange and
RPA correlation energies change less than 0.5 mRy. This
good convergence is consistent with the use in Ref. 2 of a
plane-wave kinetic-energy cutoff of 25 Ry.
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FIG. 2. �Color online� The total energy �per unit cell� differ-
ences at different lattice constants and that at the experimental one
of bulk silicon calculated using different number of eigenvalues
values included in the summation in Eq. �10� in our implementation
of EXX /RPA+ scheme. The inset is the true total energy. i.e., the
values at the experimental lattice constant is not subtracted.

TABLE III. Predicted equilibrium lattice parameter, a0, bulk
modulus, B, and pressure derivative of the bulk modulus, B�, as
function of the number of eigenvalues Neig used to evaluate RPA
+ correlation energies. The corresponding LDA and experimental
values are also shown for comparison.

Neig

a0

�a.u.�
B

�GPa� B�

50 10.155 99.5 4.22

100 10.158 99.4 4.21

150 10.162 99.3 4.19

200 10.166 99.1 4.17

LDA 10.235 92.5 4.16

Expt.a 10.26 99.2 4.15

aExperimental values are taken from Ref. 25.
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Convergence with respect to the size of supercell is more
delicate. Figure 3 shows exact-exchange and RPA correlation
energies as a function of Be-Be distances calculated using
supercells of 22 and 30 bohr. While RPA correlation energy
varies by only a fraction of a mRy �top panel�, the lower
panel shows a significant variation of several mRy for the
exact-exchange energy. As discussed in Sec. III B, slow con-
vergence of exact-exchange energy with respect to supercell
size—or the density of the BZ sampling for an extended
system—can result if, once the integrable divergence is
eliminated by the Gygi-Baldereschi procedure,18 the residual
q=0 term is not estimated correctly. This is shown in Fig. 4
where the exact-exchange energy of Be2 molecule is shown
as a function of the inverse supercell volume. A large error,
proportional to the inverse supercell volume, is present when
the residual q=0 term is simply neglected, while a much
better convergence with system size is obtained when it is
estimated according to the recipe described in Sec. III B.
While with a simple-cubic supercell of 22 bohr side the cal-
culated exchange energy still has an error of a couple of
mRy, we are fully confident that using a supercell of 30 bohr

ensures a convergence of the exact-exchange energy within a
fraction of mRy. One might expect some degree of error
cancellation in energy differences when the residual q=0
terms are neglected in the exact-exchange calculations of Be
dimer and of the separated Be atoms. Our explicit verifica-
tion has shown that a variation in the order of mRy is still
present in this difference when the supercell size is increased
from 22 to 30 bohr.

Finally, convergence of RPA correlation energy with re-
spect to the number of eigenvalues included in the ACFD
summation in Eq. �10� is shown in Fig. 5 where RPA corre-
lation energies of Be2 calculated using 120, 180, and 220
eigenvalues are plotted as a function of Be-Be distances. By
including up to 220 eigenvalues, a convergence within 0.5
mRy is obtained for the absolute value of correlation energy.
On the basis of the nearly parallel behavior of the curves
reported in Fig. 5 for different number of included eigenval-
ues we can anticipate a much faster convergence for energy
differences, which actually determine the equilibrium prop-
erties of the dimer.
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FIG. 3. �Color online� Exact-
exchange and RPA correlation en-
ergies of Be2 as a function of
Be-Be distance �dBe-Be� as calcu-
lated in a simple-cubic cell of side
length of 22 �square� and 30
�circle� bohr. Dotted lines are sim-
ply drawn as a guide to the eye.
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FIG. 4. �Color online� Ex-
change energy of Be2 as a func-
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term in the sum are reported.
Numbers close to the symbols cor-
respond to the supercell linear di-
mension in bohr.
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Table IV collects predicted binding energy, bond length,
and vibrational frequency of Be2 calculated including differ-
ent numbers of eigenvalues in the ACFD evaluation of RPA
correlation energy. As expected, all these quantities are only
very slightly changed when the number of eigenvalues is
increased from 60 to a value as large as 220. Even the mo-
lecular binding energy appears to have a convergence of the
order of the meV when only 60 eigenvalues are included in
the ACDF sum. The result that properties related to energy
differences are rather insensitive to the number of eigenpo-
tentials used in evaluating RPA correlation energy, not only
in the “standard” case of silicon �Sec. IV A�, but also in the
much more delicate case of Be2 dimer is very promising for
the future application of the present method to complex re-
alistic systems.

When compared with the reference values reported in
Ref. 2, our binding energies, both in RPA and RPA+, are
systematically smaller, although still in agreement within the
large error bar of the previous calculation. Moreover, had we
calculated the binding energy of Be2 without the q=0 cor-
rection described above, as done in the earlier calculation,28

a much better matching with the ACFD calculation in Ref. 2
would have been obtained.

Coming to the comparison with the experimental results it
is clear that while EXX /RPA+ scheme definitely improves
the poor performance of LDA and GGA for weakly bound
systems such as Be2, the results may not be as good as sug-
gested in Ref. 2. The performance of RPA+ and other
ACFD-based schemes to describe realistic weakly bound
systems needs to be more systematically investigated.

C. Spherical atomic systems

Benchmark results of RPA correlation energies for a num-
ber of spherical atoms calculated by constructing the full
response function from the spectrum of Kohn-Sham Hamil-
tonian have been recently reported in Ref. 29.

For spherically symmetric systems, ground-state Kohn-
Sham orbitals are classified by their principal quantum num-
ber, n, and by angular-momentum numbers l ,m. The KS
equations can be solved numerically on a radial grid, within
a given approximate, LDA or GGA, functional. Similarly, the
noninteracting and interacting response functions are block
diagonal with respect to angular momentum l, and
�2l+1�-fold degenerate with respect to m. Thus, contribu-
tions to the ACFD formula from different angular momenta
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FIG. 5. �Color online� RPA
correlation energies of Be2 at dif-
ferent Be-Be distances �dBe-Be�.
The curves are for different num-
ber of eigenvalues Neig included
for evaluation of Eq. �10�: N
=120 �circle�, N=180 �square�,
and N=220 �diamond�. The lines
are simply drawn as a guide. In-
set: RPA correlation energies of
Be2 at the Be-Be distance �dBe-Be�
of 4.56 bohr placed in a simple-
cubic supercell with the size
length of 22 �dashed line� and 30
bohr �solid line�.

TABLE IV. Equilibrium properties of Be2 in EXX /RPA�+� scheme with different numbers of eigenvalues
included in the calculation of RPA correlation energy

Neig

Eb

�eV�
d0

�bohr�
�e

�cm−1�

RPA RPA+ RPA RPA+ RPA RPA+

60 −0.0667 −0.0377 4.516 4.553 296.1 298.5

120 −0.0657 −0.0368 4.521 4.558 296.6 298.7

180 −0.0655 −0.0367 4.523 4.560 296.3 299.2

220 −0.0654 −0.0365 4.524 4.561 297.1 298.5

Ref. −0.08�3� −0.06�3� 4.55 4.59 311 298

Expt. −0.098 4.63 275.8
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can be calculated independently and added up. For each an-
gular momentum the calculation proceeds as follows. �i� A
trial potential is selected and the corresponding linear density
response is calculated by solving the modified Sternheimer
equation.15 A single iteration, with no self-consistency, is
needed since the noninteracting response function is studied.
�ii� The calculated density response is orthogonalized, with
overlap matrix vc, with respect to any previously computed
one. The generating potential is accordingly transformed, ex-
ploiting the linearity of �0. By calculating the Hartree poten-
tial from the resulting density a new trial perturbation is
generated. �iii� A matrix representation of �0 on the hence
generated trial-potential basis is built, and diagonalized to
get the eigenvalues ai’s. This three-step process is repeated
until convergence in the sum over eigenvalues in Eq. �10� is
reached. The same calculation procedure is then repeated at
different values of angular momentum, l, and imaginary fre-
quency, iu.30

Let us investigate the convergence of the RPA Ec with
respect to the number of eigenvalues of the generalized ei-
genvalue problem of Eq. �7�. Figure 6 shows the dependence

of RPA correlation energy—separated in the different
angular-momentum contributions—on the number of eigen-
values included in the sum for xenon atom, the heaviest atom
considered in this work �56 electrons�. Basis set convergence
is carefully checked and, for the case of Xe, a basis-set size
of 25 trial potentials is enough for the desired accuracy. It is
clearly seen that the correlation energy converges quite rap-
idly; including up to 15 eigenvalues is enough in order to
convergence the total correlation energy within 1mRy. These
calculations therefore confirm explicitly, also for the case of
spherical atoms, our expectation that RPA correlation energy
can be obtained from only a small number of eigenmodes of
the noninteracting response function of the system.

Table V shows the full RPA and RPA+ correlation ener-
gies calculated with our method for a number of spherical
atoms whose ground-state densities have been generated
from EXX-only32 and standard LDA functionals.
Experimental8 or accurate theoretical31 values are also shown
for comparison, together with reference RPA and RPA+ cor-
relation energies calculated recently,29 within a different
implementation of the ACFD approach, from EXX-only
charge densities. All our calculated values in Table V are
converged within a few mRy. The results slightly depend on
the quality of the ground-state density, i.e., on the different
approximate xc functionals used in the self-consistent
ground-state calculation. Focusing on the results obtained
starting from EXX-only charge densities, our calculated val-
ues for the full RPA correlation energy �the fifth column�
agree well with the reference data �sixth column� within the
error bar �with the exception of Be case�; similar agreement
is found for RPA+ correlation energies �eighth and ninth
columns of Table V�. The small residual differences between
the values obtained in the present and in the reference calcu-
lations may probably be attributed to some slight residual
difference in the electronic densities used as input.

Not surprisingly, RPA correlation energies alone largely
overestimate the exact values. When combined with a local-
density corrections to form the RPA+ approximation the cor-
relation energy compare very favorably with the exact values
thus giving support to the validity of RPA+ scheme.
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FIG. 6. �Color online� The dependence of RPA correlation en-
ergy on the number of eigenvalues for xenon atom. The curves
show the cumulative contribution to RPA correlation energy for
some of the lowest angular-momentum numbers �higher l are not
plotted�. Including the first 15 eigenvalues is enough to ensure a
convergence within 1mRy, which is also used as the threshold for
convergence with respect to angular number l.

TABLE V. Full RPA and RPA+ correlation energy �in Rydberg atomic units� of spherical atoms compared
to the reference and exact values. The reference data were calculated from EXX-only �i.e., exact-exchange
and no correlation� KS orbitals in a different implementation �Ref. 29�.

Atom Ec
expt Ec

LDA

Ec
RPA Ec

RPA+

�LDA �EXX Ref. 29 �LDA �EXX Ref. 29

He −0.084a −0.229 −0.168 −0.167 −0.166 −0.096 −0.094 0.094

Be −0.190a −0.447 −0.373 −0.367 −0.358 −0.230 −0.224 0.216

Ne −0.786a −1.474 −1.216 −1.195 −1.194 −0.821 −0.800 0.800

Ar −1.463a −2.842 −2.221 −2.206 −2.202 −1.503 −1.487 1.482

Kr −4.15 b −6.533 −5.226 −5.192 n/a −3.736 −3.702 n/a

Xe −6.86 b −10.358 −8.312 −8.278 n/a −6.049 −6.016 n/a

aExperimental values quoted in Ref. 8.
bDifference of “exact” and HF total energies reported in Ref. 31.
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V. CONCLUSION

In this work, we have proposed an efficient method for
the calculation of RPA correlation energies in the adiabatic-
coupling fluctuation-dissipation formalism. Our approach in-
volves the evaluation of a relatively small number of eigen-
values of the noninteracting response function, obtained
combining concepts from density-functional perturbation
theory with iterative-diagonalization techniques. General
strategies as well as technical details of the method as imple-
mented in the plane-wave pseudopotential Quantum-
ESPRESSO distribution have been discussed to some extent.

We have applied the method to study a few systems, rep-
resentative of bulk solids, weakly bound molecules and at-
oms. While the study of bulk silicon crystal helps validate
the implementation, our study of Beryllium dimer, thanks to
its improved numerical accuracy with respect to previous
studies, allows us to gain a clearer picture of the performance
of EXX /RPA+ scheme in describing weakly bound systems.
Our calculation confirms the important improvements of
EXX /RPA+ with respect to LDA or GGA but also shows
that its performance in delicate cases can be less impressive
than previously concluded. The good agreement of RPA+
correlation energy with experimental or accurate theoretical
results for a few spherical atoms lend anyhow support to the
quality of RPA+ correlation energies.

We are confident that the possibility of a careful control of
the numerical accuracy in ACFD calculation, resulting from
the improved numerical efficiency of our method, will turn
out to be very useful in the needed analysis of the perfor-
mance of such a sophisticated density functional in the study
of many other realistic systems.
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APPENDIX

In this appendix we demonstrate that the spherically av-
eraged limit, 

limq→0

A�q�−A�0�
q2 ��, is simply related to the

gauge invariant spread of the occupied KS manifold, �I,
defined in the theory of maximally localized Wannier
functions22 as

�I = �
n
�
0n�r2�0n� − �

R,m
�
0n�r�Rm��2� ,

where ��Rn�� is �any� set of Wannier functions that describes
the occupied manifold.

Starting from the explicit expression for A�q� in terms of
the occupied Bloch states

A�q� =
1

N
�
k

�
v,v�


	k,v�e−iqr�	k−q,v��
	k−q,v��e
+iqr�	k,v� ,

let us expand them in terms of the Wannier functions,

�	k,v� = �
n

Uv,n�k��
R

eikR�Rn� ,

where Uv,n�k� are general unitary transformations in the set
of occupied bands at point k in the BZ. Inserting this defi-
nition in the expression for A�q�, this becomes, after some
straightforward manipulation,

A�q� = �
R

�
n,m


Rn�e−iqr�0m�
0m�e+iqr�Rn� .

Expanding now the exponential factors in powers of q and
taking the spherically averaged limit for q→0 one easily
obtains the desired result,

�� lim
q→0

A�q� − A�0�
q2 �� = −

�I
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